
Knotting and unknotting of phase singularities: Helmholtz waves,  paraxial waves and waves

in 2+1 spacetime

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys. A: Math. Gen. 34 8877

(http://iopscience.iop.org/0305-4470/34/42/311)

Download details:

IP Address: 171.66.16.98

The article was downloaded on 02/06/2010 at 09:21

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/34/42
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 34 (2001) 8877–8888 PII: S0305-4470(01)27783-X

Knotting and unknotting of phase singularities:
Helmholtz waves, paraxial waves and waves in 2 + 1
spacetime

M V Berry and M R Dennis

H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK

Received 13 August 2001
Published 12 October 2001
Online at stacks.iop.org/JPhysA/34/8877

Abstract
As a parameter a is varied, the topology of nodal lines of complex scalar
waves in space (i.e. their dislocations, phase singularities or vortices) can
change according to a structurally stable reconnection process involving local
hyperbolas whose branches switch. We exhibit families of exact solutions of
the Helmholtz equation, representing knots and links that are destroyed by
encounter with dislocation lines threading them when a is increased. In the
analogous paraxial waves, the paraxial prohibition against dislocations with
strength greater than unity introduces additional creation events. We carry out
the analysis with polynomial waves, obtained by long-wavelength expansions
of the wave equations. The paraxial events can alternatively be interpreted as
knotting and linking of worldlines of dislocation points moving in the plane.

PACS numbers: 03.65.Vf, 02.10.Kn, 02.40.-k, 41.20.Jb, 42.25.-p, 42.55.-f

1. Introduction

In space, the zero lines of complex scalar waves�(r) = �(x, y, z) are their phase singularities,
also called wave dislocations (Nye and Berry 1974, Nye 1999) or vortices. They have been
studied in optics (Vasnetsov and Staliunas 1999, Soskin 1998, Soskin and Vasnetsov 2001),
and in quantum mechanics (Riess 1970a, b, 1987, Hirschfelder et al 1974, Bialynicki-Birula
et al 2000). It has long been known that dislocation lines can be closed (Nye and Berry 1974),
and recently it was shown that they can be knotted and linked: we (Berry and Dennis 2001a,
hereinafter called I) constructed exact solutions of the Helmholtz equation representing torus
knots and links; a straightforward application of the ideas in I (Berry 2001) led to knotted and
linked dislocation lines in stationary states of electrons in hydrogen.

As a parameter (hereinafter called a) is varied, the topology of dislocation lines can change,
leading to the creation of knots and links from initially simple dislocation loops, and the reverse
processes of unknotting and unlinking. Our main purpose here is to elucidate the mechanism of
these changes of topology (section 2), and illustrate them with explicit calculations (sections 4
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and 5). In this paper, all our waves are solutions of monochromatic wave equations, that is,
stationary waves, and a is an external parameter that could be manipulated experimentally.
However, a could represent time, and then the analogous solutions of time-dependent wave
equations would describe knotting and linking events in the history of the wave.

We also have two subsidiary aims. The first is to draw attention to families of exact
‘polynomial wave’ solutions (section 3) of the Helmholtz and paraxial wave equation. These
were introduced by Nye (1998), who constructed them by inspection. Here we present a
systematic and easy way to generate polynomial waves of several different types, using a long-
wavelength expansion (this is the opposite of expansions based on geometrical optics, and
so could be termed ‘anti-geometrical’ or ‘anti-semiclassical’). The second aim is to clarify
a potential confusion about knots and links in paraxial waves, that might have been caused
by our previous paper. In I, we constructed knots and links in the Helmholtz equation by
perturbing a high-order dislocation loop, and showed that the method fails paraxially because
the paraxial wave equation prohibits loops with strength greater than unity. However, as
Courtial and Padgett have pointed out to us (private communication), the paraxial prohibition
does not prevent the formation of paraxial knots and links by other means, and in section 5 we
show precisely how this occurs.

Polynomials do not represent physically realistic beams. Our reason for employing them
is to give the analytically simplest local description of dislocation reconnection events in knots
and links. However, since the events are structurally stable, they also occur in waves that could
be created experimentally, for example the Laguerre–Gauss beams of paraxial optics. In the
appendix we give explicit formulae for superpositions of Laguerre–Gauss beams for which
knots and links exist over parameter ranges that we specify numerically.

The techniques we use here for creating knots and links are different from those of Poston
and Winfree (unpublished), who were studying waves in excitable media. Our methods are
based on exact stationary solutions of wave equations, and lead to knots and links threaded by
multistranded helices. Theirs are based on algebraic geometry, and lead to functions that are
not stationary solutions of wave equations but need not be threaded.

In constructing our explicit examples, it is convenient to introduce a predominant phase
factor, specifying a preferred direction, and also to fix the wavenumber k = 1, equivalent to
measuring distances in units of wavelength/(2π). Thus we write

�(r) ≡ ψ(R, z) exp(iz)

R ≡ (x, y) (Cartesian coordinates) ≡ (R, φ) (cylindrical coordinates).
(1)

Dislocation lines are defined by ψ(R, z) = 0.
For waves �H satisfying the Helmholtz equation, ψ = ψH satisfies

∇2
⊥ψH + 2i∂zψH + ∂2

z ψH = 0 ∇2
⊥ ≡ ∂2

x + ∂2
y . (2)

In the paraxial approximation, the second derivative term in z is dropped, and waves�p, when
rephased according to (1) to give ψp, satisfy the paraxial or parabolic wave equation

2i∂zψp = −∇2
⊥ψp. (3)

This form of writing emphasizes the well known fact that the paraxial approximation to the
three-dimensional wave equation is exactly the time-dependent Schrödinger equation in two
spatial dimensions R, with z representing time. Therefore the paraxial knots and links we will
generate also represent topologically interesting histories of nodes in evolving quantum waves
for free particles in the plane.
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a<0 a=0 a>0

Figure 1. Dislocation reconnection, described by (4) with γ = π/12. Arrows give the directions
about which the phase increases right-handedly, and the dashed line indicates N = 0 (equation (5)).

2. Local dislocation reconnection

The topology of dislocation loops can change if increasing a causes two strands to cross and
reconnect as illustrated in figure 1. A wave with this property is

ψ = xy

sin 2γ
− 1

2
(x2 + y2) + a + iz. (4)

This is a solution of both the Helmholtz and paraxial equations (2) and (3), describing
two dislocation lines in the form of hyperbolas lying in the x, y plane, with asymptotes in
directions φ = γ , π/2−γ , π +γ , 3π/2−γ , whose branches switch as a passes through zero.
Geometrically, this is the behaviour of contour lines of a function (Reψ) near a saddle.

At a reconnection, the direction N of a dislocation line (Berry and Dennis 2000) becomes
indeterminate, in addition to ψ vanishing, so that

ψ(r, z) = 0 N(R, z) = Im ∇ψ∗ × ∇ψ = 2∇Reψ × ∇Imψ = 0. (5)

N is the vector product of two real vectors, and so vanishes when these vectors are parallel.
This corresponds to two conditions, so generically N = 0 on lines in space. (These lines
are also ‘L lines’ (Nye and Hajnal 1987) where ∇ψ , regarded as a complex vector field, is
linearly polarized (Berry and Dennis 2001b).) Reconnection occurs when a dislocation line
encounters an N = 0 line, typically as a single parameter varies. In the wave (4), N = 0
on the z axis. Later we will find that the conditions (5) are very convenient in locating the
reconnection events.

A different and very simple way that might be envisaged for one or more dislocation
loops to change topology is for two strands to cross inertly, that is, without the reconnection
just described. It is not difficult to construct functions whose line zeros do cross inertly. For
example,

ψ = (x + iz)(y + i(z− a)) (6)

represents a dislocation along the y axis and a dislocation parallel to the x axis that crosses
the first when a = 0. However, this simple product is unstable against perturbation: even the
addition of a (possibly complex) constant causes the dislocation crossing to take place via two
reconnection events like those in figure 1, rather than inertly. Moreover, (6) is not a solution
of the wave equation (2) or (3), and our attempts to construct solutions by adding higher terms
were frustrated because the additional terms destroyed the crossing. Bialynicki-Birula et al
(2000) exhibit a wave resembling (6) and satisfying the time-dependent Schrödinger equation
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Table 1. Polynomials R−m exp(∓imφ)ψHmn associated with Bessel beam solutions of the
Helmholtz equation.

n = 0 1
n = 1 R2 + 2i(m + 1)z
n = 2 R4 − 4(m + 2)(m + 1)z2 + 4i(m + 2)z(R2 − (m + 1))
n = 3 R6 − 12(m + 3)(m + 2)z2(R2 − 2(m + 1))

+ 2i(m + 3)z(3R4 − 2(m + 2)(3R2 + 2(m + 1)(z2 − 3)))

in three dimensions, representing the interaction of two dislocations, with time acting as the
parameter. However, close examination again reveals two reconnection events of the type
described by the normal form (4), confirming that the sequence shown in figure 1 is stable
against perturbation and therefore occurs naturally, as we will see later in several examples.

For completeness, we should mention that there are other types of interactions between
dislocations satisfying wave equations (Nye and Berry 1974), though these are not relevant in
the present context: loops that shrink and disappear, and straight parallel dislocation lines that
approach and annihilate or bounce off each other.

3. Polynomial waves

To generate our knots and links in I, we used superpositions of Bessel beams, and the same
construction would also produce the topology changes that we are exploring here. However,
we can get algebraically simpler descriptions of the same phenomena by expanding ψH and
ψp in series of polynomials. This is consistent with the fact that dislocations, regarded as
singularities, describe the fine structure of wavefields, and are complementary to the caustic
singularities of geometrical optics (Berry 1981, 1998). Although the intensity of polynomial
waves increases in directions transverse to the z axis, so that they cannot represent beams
globally, they are admirably suited to describe not only the local transformations of dislocations
(indeed, this is why they were introduced by Nye (1998)), but also the ‘semi-local’ topology
we study here.

To generate these polynomials, we start with the Bessel beams with angular momentum
±m and transverse wavenumber κ . Exact Bessel beam solutions of the Helmholtz equation (2)
are

ψH,m(R, φ, z) = exp(±imφ)Jm(κR) exp
{

iz
(√

1 − κ2 − 1
)}

m � 0. (7)

For the paraxial wave equation (3), the corresponding beams are

ψp,m(R, φ, z) = exp(±imφ)Jm(κR) exp
{− 1

2 izκ2
}

m � 0. (8)

The algorithm producing polynomial waves is based on the observation that if the
solutions (7) and (8) are expanded in powers of κ (this is the anti-geometrical expansion) then
the coefficients of κn are also solutions of the corresponding equations. These coefficients,
denoted ψmn, are polynomials in R and z, multiplied by exp(±imφ). Tables 1 and 2 list the
first few polynomials for Helmholtz and paraxial waves, normalized so that the coefficient
of the highest power of R is unity. For n � 2, the paraxial polynomials have fewer terms
than their Helmholtz counterparts, and we will see that this makes a crucial difference to the
dislocation topology. (For m = 0, the Helmholtz polynomials reduce to linear combinations
of those listed by Nye (1998).)

It is worth remarking that polynomial waves can be generated by the long-wavelength
expansion of any set of solutions of (2) and (3), not just the Bessel beams that are useful for
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Table 2. PolynomialsR−m exp(∓imφ)ψpmn associated with Bessel beam solutions of the paraxial
wave equation.

n = 0 1
n = 1 R2 + 2i(m + 1)z
n = 2 R4 − 4(m + 2)(m + 1)z2 + 4i(m + 2)zR2

n = 3 R6 − 12(m + 3)(m + 2)z2R2

+ 2i(m + 3)z(3R4 − 4(m + 1)(m + 2)z2)

our present purposes. For example, expansion of the simple Helmholtz and paraxial plane
waves

ψH = exp
{

i
(
κx +

(√
1 − κ2 − 1

)
z
)}

and ψp = exp
{
i
(
κx − 1

2κ
2z

)}
(9)

provides a way of systematically generating the Cartesian polynomial waves of Nye (1998).

4. Knotting and linking of Helmholtz waves

To create knots and links that will then be made to change topology, we first adopt the strategy
already employed and explained in detail in I. In brief, we create a wave ψ0 with an axial
dislocation of strength p encircled by a dislocation ring of strength q, and then perturb this
with a wave of amplitude a that does not possess dislocations threading the ring. When a is
small, the result is that the ring explodes, acquiring the topology of a torus knot with winding
numbers (p, q) if p and q are coprime, and a link otherwise; the axial threading dislocation
explodes into p twisted curves resembling a p-stranded helix.

To get the topology change, we simply increase the ‘perturbation’ a. Then, as we will
see, the torus on which the knot or link is wound, and the cylinder on which the p threading
strands are wound, get thicker until they encounter each other. At this moment, the threading
strands swallow the knot, by the mechanism of section 2, and the knot disappears.

We first illustrate this procedure in the simplest case: the link p = q = 2 (in mathematics
this is called the Hopf link). For the central strength 2 dislocation, we use polynomial waves
from table 1 with m = 2. A strength 2 ring in the symmetry plane z = 0 requires

ψ0(Rc, φ, 0) = ∂Rψ0(Rc, φ, 0) = ∂zψ0(Rc, φ, 0) = 0 (10)

for some radius Rc. These equations can be satisfied by adjusting the constantsA and B in the
linear combination

ψ0H,link = N(ψH20 + AψH21 + BψH22) (11)

where N is a constant, to be chosen so that the coefficient of the highest power of R is unity.
An easy calculation gives

A = − 1
6 B = 1

144 Rc =
√

12. (12)

For the perturbation, the simplest choice is the plane wave ψ = a, leading to the total wave

ψH,link = exp(2iφ)R2[(R2 − 12)2 − 48z2 + 16iz(R2 − 12)] + a. (13)

Figure 2(a) shows the link that has been created from the ring as a increases from zero; this
is already familiar from our earlier analysis in I. To see what happens for larger a, we calculate
the vector field N(R, z), whose vanishing at a dislocation signals a change of topology (cf (5)).
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Figure 2. Creation and destruction of linked dislocations in a Helmholtz wave as a increases,
computed from (13). (a) a = 100, just after the creation of the link; (b) a = 250; (c)
a = acrit = 256, when reconnection destroys the link; (d) a = 260. (For clarity, these figures
have been magnified in the z direction.) To draw the figures, a multibranched representation of
the zero lines of (13), parametrized by φ, was used, to depict points on the dislocation line as a
series of overlapping dots, computed using Mathematica, whose sizes decreased away from the
observer. Then the knots were connected into smooth curves, and the crossings of dislocation
strands clarified, using Adobe Illustrator.

Since N depends only on derivatives of ψ , this vector is independent of a for the wave (11).
Direct calculation from (5) gives

NR = −64R4z[5(R2 − 12)2 + 144z2]
Nφ = −192R3(R2 − 4)[(R2 − 12)2 + 48z2]
Nz = 16R3

[
3
4 (R

2 − 12)3(R2 − 4) + 80z2(72 − 18R2 + R4) + 576z4
]
.

(14)

Inspection shows that N vanishes along the z axis (R = 0), and on the rings (R, z) =
(
√

12, 0) and (2, 0). On the z axis and on the ring (
√

12, 0), ψ = a, so that these lines
correspond to the birth at a = 0 of the link and its two threading dislocations. On the ring
(2, 0), (13) gives

ψH,link(2, φ, 0) = 256 exp(2iφ) + a. (15)

This represents the topology change we are interested in, which therefore occurs at

acrit = 256 Rcrit = 2 φcrit = 1
2π and 3

2π zcrit = 0. (16)
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Figures 2(b)–(d) show the sequence through acrit . The link is destroyed by two simultaneous
reconnection events of the type shown in figure 1. (The fact that the reconnections occur
simultaneously is an artefact of the symmetry of the wave (13), and does not compromise
the genericity of the separate reconnections; for a slightly more general perturbation, e.g.
a+εx +δy for complex ε and δ, the reconnections would happen at different values of a.) Note
how as a approaches acrit the threading dislocations distort, in preparation for the reconnection
that requires the connecting dislocations to be locally coplanar, according to the model in
section 2.

Our second example is the trefoil knot p = 3, q = 2. The analysis is very similar. Instead
of (11), we have a linear combination of the Helmholtz polynomial waves ψH30, ψH31, and
ψH32, with coefficients determined again by (10), leading to the analogue of (13):

ψH,knot = exp(3iφ)R3[(R2 − 20)2 − 80z2 + 20iz(R2 − 20)] + a. (17)

When a = 0, the knot is created from the ring at (
√

20, 0). Calculation of N gives the analogue
of the formulae (14), showing that the topology change occurs when the knot encounters the
ring (

√
(60/7), 0). The analogue of (15) is

ψH,knot

(√
60
7 , φ, 0

)
= 768 000

342

√
15
7 exp(3iφ) + a. (18)

Topology change occurs at the analogue of (16), namely

acrit = 768 000
343

√
15
7 = 3277.66 . . . Rcrit =

√
60
7

φcrit = (± 1
3π, π

)
zcrit = 0.

(19)

Now the knot is destroyed by three reconnections (again simultaneous for inessential reasons
of symmetry).

5. Knotting and linking of paraxial and Schrödinger waves

As shown in I, it is impossible to create higher-order dislocation loops in paraxial waves.
Therefore an attempt to make knots and links by analogy with the previous section, using the
paraxial polynomial waves from table 2 instead of the Helmholtz polynomials of table 1, ought
to fail. In fact it does not fail, and detailed study not only illustrates the topology changes we
are focusing on here but also provides an instructive example of how the ‘paraxial prohibition’
works in practice.

Let us consider the paraxial analogue of the link construction based on (11), namely

ψ0p,link = N(ψp20 + Aψp21 + Bψp22) (20)

and attempt to satisfy the three conditions (10). Using table 2 we find that the first two
conditions, ψ = 0 and ∂Rψ = 0, imply A = −2/R2, B = A2/4, but that it is impossible to
satisfy ∂zψ = 0. Inspecting the resulting unperturbed wave, namely

ψ0p,link = exp(2iφ)R2

[(
R2 +

2

A

)2

− 48z2 + 16iz

(
R2 +

3

2A

)]
, (21)

we see that the absence, in the paraxial polynomial labelled ψp22, of one term that is present in
the corresponding Helmholtz polynomial, implies that changing A trivially rescales the whole
pattern: the framework of paraxial waves is too rigid for all the equations (10) to be satisfied
simultaneously. Therefore, the value of A is immaterial, and, simply to give the same critical
ring radius as for the Helmholtz wave (13), we choose A = −1/6, giving

ψp,link = exp(2iφ)R2[(R2 − 12)2 − 48z2 + 16iz(R2 − 9)] + a. (22)
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a

d

b

c

Figure 3. Creation and destruction of linked dislocations in the paraxial wave as a increases,
computed from (22). (a) a = 8.6; (b) a = 34.56; (c) a = acrit1 = 37.82 . . . , when reconnection
creates the link; (d) a = 41.5; (e) a = 172.8; (f ) a = 250.6; (g) a = acrit2 = 256, when a second
reconnection destroys the link; (h) a = 259.2. (For clarity, these figures have been magnified in
the z direction.) The figures were drawn as described in the caption to figure 2, but with R as
parameter.

The only difference between (22) and (11) is the final numerical coefficient—9 instead
of 12—but this is a crucial difference. Instead of the single strength 2 dislocation ring of
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e

g

f

h

Figure 3. (Continued.)

the Helmholtz wave, the paraxial wave has three rings: a strength zero ring, at (
√

12, 0), and
two rings with strength 1, at (3,±1/4). Again, there is a central threading dislocation of
strength 2. Under perturbation (a increasing from zero), the ring with strength zero becomes
two thin crescent-shaped loops lying close to the xy plane (figure 3(a)).
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To understand what happens when a is further increased, we need the vector N

corresponding to the wave (22). From (5),

NR = −64R4z[5R4 − 72R2 + 216 + 144z2]
Nφ = −192R3[(R2 − 4)(R2 − 9)(R2 − 12) + 48z2(R2 − 3)]
Nz = 4R3[3(R2 − 12)3(R2 − 4) + 240z2(72 − 18R2 + R4) + 2304z4].

(23)

As before, N vanishes along the z axis (R = 0), associated with the birth of the threading
dislocations near the z axis, and on the ring (

√
12, 0), corresponding to the birth of the crescents.

N also vanishes on the ring (2, 0), which as we will see plays a similar role as in the Helmholtz
case.

However, there are two additional N = 0 rings, with no counterpart in the Helmholtz
case, at

Rcrit1 =
√

2 + 4
√

2 cosµ = 3.156 37 . . .

zcrit1 = ± 1
6

√
−43 + 52

√
7 cosµ− 70 cos 2µ = ±0.187 059 . . .

(24)

where

µ = 1

3

(
π − arccos

47

28
√

7

)
. (24a)

These correspond to the creation of a link, by four simultaneous interactions of the two
dislocation crescents with the two strength 1 dislocation rings that were present at a = 0.
The process is shown in figures 3(b)–(d). The parameter value acrit1 and the azimuths ±φcrit1

of these reconnection events are obtained by inserting the values (24) into (22):

acrit1 = 37.8161 . . . φcrit1 = 1.139 87 . . . = 65.31◦. (25)

Two of these interactions are with the upper ring, at +zcrit1 and φcrit1 and π +φcrit1, and two are
with the lower ring, at −zcrit1 and −φcrit1 and π − φcrit1.

What we learn from this is that although the paraxial prohibition prevents the formation of
higher-strength dislocation rings that would allow the link to be created by perturbation from
a = 0, for a sufficiently large ‘perturbation’ the link forms anyway (figure 3(e)), though by
a different mechanism, and thereafter the dislocation topology is the same for paraxial as for
Helmholtz waves. We can see this by further increasing a: just as in the Helmholtz case, the
link is eventually destroyed by reconnection with the threading dislocations. For the paraxial
link, this second pair of critical events (figures 3(f )–(h)) is associated with the N = 0 ring
at R = 2; the corresponding parameters are the same as in (16), because the paraxial and
Helmholtz waves (22) and (11) are identical when z = 0.

For the trefoil knot, the analogous sequence is creation of the knot by interaction of three
thin crescents with the two pre-existing dislocation rings, at six simultaneous reconnection
events, followed by its destruction at three simultaneous reconnections with the three threading
dislocation lines. The paraxial analogue of (17) is

ψp,knot = exp(3iφ)R3[(R2 − 20)2 − 80z2 + 20iz(R2 − 16)] + a (26)

where again the value R = √
20 is chosen for comparison with the Helmholtz case and has no

intrinsic significance.
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For the six creation events, the critical parameter values are

acrit1 = 475.995

Rcrit1 = 4

√
5(1 + 5 cosµ)

21
= 4.160 528 . . .

φcrit1 = 0.750 71 . . . = 43.49◦

zcrit1 =
√

500(2 cosµ− cos 2µ)− 701

147
= 0.191 897 . . .

(27)

where

µ = 1
3

(
π − arccos 2194

3125

)
(27a)

with connections with the upper ring z = +zcrit1 occuring at azimuths φcrit1, φcrit1 ± 2π/3, and
connections with the lower ring z = −zcrit1 occuring at azimuths −φcrit1, −φcrit1 ± 2π/3. The
three destruction events occur at the same parameter values (19) as for the Helmholtz knot.

In the interpretation of the paraxial wave equation as a Schrödinger equation, these families
of dislocation lines, parameterized by a, take on a different meaning. For fixed a, the solutions
describe patterns of dislocation points moving in the xy plane and encountering each other in
creation and annihilation events. In spacetime, the world lines of the dislocation points are the
knots and links we have described. As a varies, the creation and destruction of knots and links
appear as pairs of dislocation points bouncing off each other, rather than pairs that are created
or annihilate.

Acknowledgments

We are indebted to Dr Johannes Courtial and Professor Miles Padgett for their paraxial
calculations that inspired the work reported here. MRD is supported by a University of Bristol
postgraduate scholarship.

Appendix. Knots and links in Laguerre–Gauss beams

Laguerre–Gauss beams, that is solutions of the paraxial wave equation (3) for wavenumber
k = 1, are

ψLGmn(R, φ, z) =
(
w(−z)
w(z)

)n exp
{− R2

2w(z)

}
w(z)m+1

Rm exp(imφ)Lmn

(
R2

|w(z)|2
)

(A.1)

where L denotes the associated Laguerre polynomials and

w(z) = 1 + iz. (A.2)

(These formulae describe beams with waist width unity; beams with other widths can be
obtained by rescaling R and z.)

The simplest link and knot are obtained by superposing three of these beams with a plane
wave of amplitude a. We choose the superpositions to make the degenerate ring (where ψ
and ∂Rψ vanish for a = 0) occur at R = 1 (cf the remarks before equation (22)). As with the
paraxial polynomial waves of section 5, knots and links are created as a increases through a
critical value acrit1 and destroyed at acrit2.

For the link, we find

ψ = ψLG20 − 6
7ψLG21 + 2

7ψLG22 + a. (A.3)
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The link is created at four reconnection events, whose critical parameter values are

acrit1 = 0.003 3706 51 . . . Rcrit1 = 0.883 533 . . .

zcrit1 = ±0.026 3448 . . . φcrit1 = ±69.41◦ and ∓ 110.59◦.
(A.4)

For these Laguerre–Gauss beams, there are four destruction events (unlike the two for
polynomial waves), with parameters

acrit2 = 0.017 968 . . . Rcrit2 = 0.535 649 . . .
zcrit2 = ±0.038 8719 . . . φcrit2 = ±108.05◦ and ∓ 71.95◦.

(A.5)

For the knot,

ψ = ψLG30 − 8
13ψLG31 + 2

13ψLG32 + a. (A.6)

The knot is created at six reconnection events, whose critical parameter values are

acrit1 = 0.000 972 409 . . . Rcrit1 = 0.913 606 . . .
zcrit1 = ±0.014 6031 . . . φcrit1 = ∓74.71◦,±45.29◦,±165.29◦.

(A.7)

There are six destruction events, with parameters

acrit2 = 0.005 733 33 . . . Rcrit2 = 0.624 702 . . .

zcrit2 = ±0.014 3240 . . . φcrit2 = ∓53.58◦,±66.42◦,±186.42◦.
(A.8)
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